

Analytical Challenges in the transition from biological to chemical methods for the control of marine biotoxins in seafood

Ana Gago-Martínez^{1,2}, José M. Leao¹

- 1.- University of Vigo, Faculty of Chemistry, Dept. of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310-Vigo, Spain
- 2.- EU Reference Laboratory for Marine Biotoxins, Campus Universitario de Vigo, 36310-Vigo, Spain

OUTLINE

\$ EURLMB

Introduction to Marine biotoxins and their control in the EU

Transition from animal tests to chemistry

❖ An update on the present situation

Future perspectives challenges and needs

EURL FOR MARINE BIOTOXINS

EUROPEAN REFERENCE appointed by EU Commision (DGSANTE)

SPANISH REFERENCE appointed by Spanish Competent Authority (AECOSAN)

Harmful algal blooms and marine biotoxins

Natural contamination: Proliferation of toxic phytoplankton

BIOLOGICAL RISK

Shellfish Toxins

Yessotoxin

The Mouse Bioassay

 the long-standing reference method for shellfish toxins

Disadvantages

- Poor precision (± 20-30%)
- Poor accuracy, especially near regulatory levels
- Subject to false positives
- Subject to false negatives due to either poor detection limit or unsuitability for some toxins
- Animal rights concerns

Alternative methods

Chemical Risk

Difficulties in implementing alternative non-animal methods:

- 1. Long time success of animal methods.
- 2. Ease of use of animals- no need for highly trained staff.
- 3. Chemical/ instrumental methods can be expensive especially to set up.

The Analytical Challenges

➤ To provide monitoring of a large number of regulated toxins in shellfish.

➤ To detect and identify toxins at low levels in shellfish before they cause problems – earliest possible warning.

To monitor comprehensively for a wide range of emerging toxin groups and various structural analogues, even if they are not regulated.

Current Situation in the EU Legislation

Complex analyte and complex matrix

Analytical Performance need to be tested

Proficiency Testing: Tool to determine laboratory testing performance by interlaboratory comparisons

Follow up

 Good NRL performance crucial for proper implementation of official controls
 Appropriate actions should be taken by EURL if results of PTs

reveal underperformance

EURLMB PTs

NRLs % with satisfactory results in PTs by toxins group and method

Expresion of the results, (recovery correction or not, LOD and LOQs)
Protocols used, lack of experience, etc

Analytical Issues

Harmonised Criteria

AUDITS: Harmonisation is needed

Dealing with Uncertainty: a priority issue

EURLMB Working group harmonization of the measurement of the uncertainty among EU-NRLs

Toxicological Issues

EU LEGISLATION	MARINE BIOTOXIN	REGULATORY LIMIT
REGULATION (EC) No 853/2004	Okadaic Acid, dinophysistoxins and	160 micrograms of okadaic acid
	pectenotoxins together	equivalents per kilogram
	Azaspiracids	160 micrograms of azaspiracid
		equivalents per kilogram
REGULATION (EU) No 786/2013	I Vaccatavinc	3,75 milligram of yessotoxin
		equivalent per kilogram

TEF Toxicity Equivalent Factor IP/ORAL

Are the TEFs adequate?

How to express results?

Challenging Issues

The Challenge of detecting new or unknown toxins

Reg (EU) 15/2011. After the period established in point B(1) of this Chapter (31 December 2014), the mouse bioassay shall be used only during the periodic monitoring of production areas and relaying areas for detecting new or unknown marine toxins on the basis of the national control programmes elaborated by the Member States

Method development for identification and confirmation of Emerging toxins in the EU

- ✓ Development of standards and reference materials
- ✓ Development of sample pretreatment protocols
- ✓ Development of screening and confirmation methods

Harmonization of phytoplanton control

SUMMARY

Ackowledgments

❖ EURLMB staff

B. Ben; O. Vilariño; S. Otero; M. Barreiro; J. Iturbe, M.Quintans

UVIGO Staff

J.M. Leao; S. Rivera; J. Prado; N. Garcia; G. Moreiras; J. Giráldez; S. Rodríguez